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What is an internal wave?

AIR \
\ SURFACE WAVES

e Internal waves are ubiquitous in the world’s oceans.

e Internal waves affect: tidal energy dissipation, sediment transport, acoustics,
ocean's food web, and the transport of pollutants.

e Oceanic internal wave amplitudes can be larger than 100 meters, and their
associated currents can be seen from space!



Satellite Image of Oceanic Internal Waves:

Image is 300 by 100 km, and (©ESA 2000.



Introduction

What are the key issues for modeling multiscale highly nonlinear internal

waves?
e Need to capture generation, propagation, and dissipation

e Simplified equation sets won't work, need to solve incompressible

Navier-Stokes equations
e Large ranges in spatial and temporal scales
e Internal waves interact with complex bathymetry
What do we hope to provide with this method?

e An enhanced ability to interpret and extend the results of field and
laboratory studies

e A predictive tool for both engineering and science



Incompressible Navier-Stokes Equations

Momentum balance

v — —
@4 (@ V)i = —L + G+ vAG
0

Divergence free constraint
V-u=0
Density conservation
pr+u-Vp=0

Passive scalar transport

¢ +u-Ve=V-(k.Vc)+ H,
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Temporal Discretization: Projection Method

We build on a classic second-order accurate projection method (Bell,
Colella, Glaz, JCP 1989). We split the momentum equations into three

pieces:
e Hyperbolic: u; + (4 - V)u=H

where we compute the advective term explicitly.

e Parabolic: w, = vAu+ S

which we solve implicitly for a predictor velocity.
e Elliptic: V- %Vp =V . (—(u-V)u+ vAu)

which we solve implicitly for pressure, then correct the predictor

velocity.



Spatial Discretization: Embedded Boundaries (EB)

For the bulk of the flow, O(n?) cells in 3D, we compute on a regular Cartesian grid.
We use an embedded boundary description for the O(n?) control-volumes (in 3D)
that intersect the boundary.

Advantages of underlying rectangular grid:

e Grid generation is tractable, with a straightforward coupling to block-structured
adaptive mesh refinement (AMR)

e Good discretization technology, e.g. well-understood consistency theory for
conservative finite differences, geometric multigrid for elliptic solvers.



Finite-Volume EB Control Volumes

Three example irregular control volumes are shown below. Green curves

indicate the intersection of the exact boundary with a Cartesian cell. We
approximate face intersections using quadratic interpolants.

For each control volume we compute: volume fractions, area fractions,
centroids, boundary areas, and boundary normals. These are all we need

for second-order accurate discretizations of our conservation laws.



Block-Structured Adaptive Mesh Refinement (AMR)

In adaptive methods, one adjusts the computational effort locally to maintain a
uniform level of accuracy throughout the problem domain.

e Refined regions are organized into rectangular patches. Refinement is possible in
both space and time.

e Using EB AMR finite-volume methods we maintain conservation and
second-order accuracy.
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EB AMR Grid Generation Example: South China Sea

e Black boxes are a decomposition of the coarsest level, red boxes are finer grids.
e Each box is further sub-divided into individual control volumes.

e Upper right is Taiwan, lower right is the Philippines, mainland China is upper left.

11



Why is AMR important?

The “classic” lock-exchange test problem with AMR will show why...

e Flow is inside a 0.5m tall, by 3m wide tank.

e On the left side of the tank we start with light freshwater, on the right is heavy
saltwater. The density ratio of light fluid to heavy fluid is 1000/1030.

e On the following lock-exchange slides, the lower figure is a zoom in on the
center region of the tank.
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Single Level...
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Two Levels...

14



Three Levels...
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Why is AMR important? Answer: With AMR, one can “zoom in” on moving
regions, and accurately capture the important flow physics at multiple scales.
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Convergence Study:

Evolution of the Flow Field Within a Rotating Sphere
Base Grids 64°-128° | Rate | 128°-256°

L1 Norm of U Velocity Error || 2.80e-06 1.81 | 7.97e-07
L1 Norm of W Velocity Error || 4.13e-08 2.23 | 8.78e-09
L2 Norm of U Velocity Error || 4.61e-06 1.73 | 1.39e-06
Lo Norm of W Velocity Error || 9.42e-08 2.02 | 2.32¢-08

The slice is colored by u-velocity, and streamtubes aid in visualizing the flow.
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Internal Wave Generation:

Oceanic Stratified Flow Past A Sill
e Flow is inside a 2D domain that is 256 meters deep by 4096 meters long.
e Thereis a 196 meter tall Gaussian sill centered 1024 meters from the left side.

e The domain is forced by a stratified inflowing current on the left at 0.2 m/s.

The stably stratified initial and inflowing density profile is given by
p = 1001 — €%9673% \here z = 0 is at the top of the domain.




INFLOW

Internal Wave Generation: Oceanic Stratified Flow Past A Sill

SILL INTERNAL HYDRAULIC JUMP SECOND SOLITON

DENSITY PLOT

VORTICITY PLOT

SCALAR PLOT

PRIMARY VORTICITY GENERATION ZONE BOTTOM-TRAPPED VORTEX

Hydraulic jumps occur in rivers too...
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Internal Wave Dissipation:

Breaking Waves on a Slope

Flow is inside a 0.5m tall, by 3m long tank, with an 8:1 slope starting 1m from
the left side

Below is the initial density distribution (blue is light fluid, red is heavy fluid).

Density ratio of light fluid to heavy fluid is 1000/1030, and our pycnocline is
smoothed over 10 cm. The pycnocline is perturbed on the left side of the tank.

Thanks to Prof. Fringer (a former CSGF fellow) of Stanford University for this
test problem
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Breaking Internal Wave on a Slope: 2D Calculation
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Breaking Internal Wave on a Slope: 3D Calculation
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Conclusions and Future Work

e \We now have a second-order accurate adaptive incompressible
Navier-Stokes model for 2D or 3D irregular domains.

e We are showing promising results for highly nonlinear internal waves
e Future Work:

— Multiscale South China Sea internal waves (with Dr. Fringer and
Dr. Colella)

— Fourth-order accuracy (with Dr. Colella)
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